CSCI-564 CONSTRAINT PROCESSING AND HEURISTIC SEARCH

LECTURE 10 - LINEAR-SPACE SEARCH

Dr. Jean-Alexis Delamer

Recap

- The A* algorithm always terminates with an optimal solution
- It can be applied to general state space problems.
- You can transform a problem to use a distance metric.

Linear-Space search

- Suppose that for a given problem:
- You need 100 bytes to store one state.
- A* generates 100,000 new states every second.
- It represents ${ }^{\sim} 10 \mathrm{MB}$ per second.
- After 10 minutes you are using 5 GB of memory.

In a matter of minutes, you can run out of memory.

Linear-Space search

- Several search techniques can scale linearly with the search depth.
- A major trade-off is an increase in time (possibly exponential).
- Example:
- The lower bound is a search with logarithmic space.
- However, the time increase makes it intractable.

Linear-Space search

- Example:
- The lower bound is a search with logarithmic space.
- However, the time increase makes it intractable.
- Divide-and Conquer BFS

- A graph with n nodes.
- Call Exists-Path that return if a path exists between u and v with l edges.
- If $l=1$, return true
- Otherwise, for each intermediate nodes index $j, 1 \leq j \leq n$, it calls recursively Exists-Path($u, j,[l /$ 21) and Exists-Path(j, b, [l/2]).

Linear-Space search

- Divide-and Conquer BFS
- A graph with n nodes.
- Call Exists-Path that return if a path exists between u and v with l edges.
- If $l=1$, return true
- Otherwise, for each intermediate nodes index $j, 1 \leq j \leq n$, it calls recursively Exists-Path(u, j, [l/2]) and Exists-Path(j, v, [l/2]).
- The recursion stack must store at most $O(\log n)$ states.
- Let $T(n, l)$ be the time to determine if there is a path of l edges, where n is the number of nodes.
- We have the recurrence relation:
- $T(n, 1)=1$
- $T(n, l)=2 n \times T\left(n, \frac{l}{2}\right)$
- Resulting in $T(n, n)=(2 n)^{\log n}=n^{1+\log n}$ for one test.
- Because v is varying and we iterate l on the range $\{1, \ldots, n\}$, we have an overall performance of $O\left(n^{3+\log n}\right)$.

Linear-Space Search

Procedure DAC-BFS

Input: Explicit problem graph G with n nodes and start node s
Output: Level of every node

for each i in $\{1, \ldots, n\}$; For all nodes i
for each l in $\{1, \ldots, n\}$; For all distances l
if $($ Exists-Path $(s, i, l))$; If path of length l exists
print $(s, i, l) ;$ break	; Output level and terminate

Procedure Exists-Path

Input: Nodes a and b, expected distance l between a and b
Output: Boolean, denoting if path of this length does exist

```
if (l=1) ;; If path has come down to one edge
    return ((a,b) \inE) ;; Feedback if edge between }a\mathrm{ and }b\mathrm{ exists
for each j in {1,\ldots,n-1} ;; For all intermediate values
    if (Exists-Path(a,j,\lceill/2\rceil) and Exists-Path(j,b,\lfloorl/2\rfloor)) ;; Recursive check
        return true ;; If both calls are successful, a path exists
return false ;; No path possible
```


Search Tree

- We can transform the state space of a problem into a graph.
- The algorithms find the shortest path in a graph.

- We are updating the search tree when we find a shortest path (duplicates).
- However, not every search algorithms eliminates duplicates.

dr. JeAn-alexis delamer - stff university

Search Tree

- We need to consider each nodes individually.
- It's easier to consider a search tree starting from a root s than a graph.
- Why?

Search Tree

- The element in the search space are paths.
- Recall that for A^{*} the admissibility condition is:
- $\delta(u, T)=\min \{\delta(u, t) \mid t \in T\} \geq 0, \forall u \in S$
- In search trees it becomes:
- $\min \{w(q) \mid(p, q) \in \mathbf{T}\} \geq 0$
- $w: \mathbf{S} \rightarrow \mathbf{T}$, where \mathbf{S} is the search tree problem state space starting in s.
- T the subset of paths that end in a goal node.

Search Tree

- Because we are considering paths the search tree grows very quickly.
- How can we solve this issue?
- Pruning path that cannot be better than the current best solution.
- Branch-And-Bound is this type of algorithm.
- Branching: expands interesting subproblems
- Bounding: Ignore solutions that are outside some values.

Branch-And-Bound

- Branch-And-Bound:
- We extend DFS by applying Branch-And-Bound.
- Maintain lower and upper bounds (L and U).
- DFS will expand only the branch (partial path) that are inside the bounds.
- How would you calculate the lower bound?
- By applying an admissible heuristic h
- $L(u)=g(u)+h(u)$
- And for the upper bound?
- Calculate a first solution (it can be greedy).

Branch-And-Bound

- Is the first solution obtained optimal?
- No, like DFS the first solution is not optimal.
- Each time a goal is found we update the upper bound.

Branch and Bound

```
Function DFBNB (u,g,U):
    if (Goal(u)) //Goal found
    if (g<U) // Improvement to currently shortest path
                            bestPath\leftarrowPath(u) // Record solution path
                    U}\leftarrow
    else
        Succ (u)\leftarrowExpand (u)
        Let {\mp@subsup{v}{0}{},\ldots,\mp@subsup{v}{n}{}}\mathrm{ be Succ (u), sorted according to }h
        for each }j\mathrm{ in {1,..,n}
        if (g+h(vj)<U) // Apply upper bound pruning
End Function
Initialize upper bound U;
bestPath }\leftarrow\emptyset
DFBnB (s,0,U);
return bestPath;
```


Branch and Bound

- Example:

$$
U=\infty
$$

Branch and Bound

- Example:

Branch and Bound

- Example:

Branch and Bound

- Example:

Branch and Bound

- Example:

$$
g+h(a b d)=15
$$

So, we don't explore.

Branch and Bound

- Example:

$$
\begin{gathered}
g+h(a b d)=15 \\
\text { So, we don't explore. }
\end{gathered}
$$

Branch and Bound

- Example:

Branch and Bound

- Example:

$$
g+h(a b d)=15 \quad g+h(a c d)=15
$$

So, we don't explore. So, we don't explore.

Branch and Bound

- Example:

$$
g+h(a b d)=15 \quad g+h(a c d)=15
$$

So, we don't explore. So, we don't explore.

Branch and Bound

- Example:

Branch and Bound

- Example:

dr. JeAn-Alexis delamer - stfx university
So, we don't explore. So, we don't explore.

Branch and Bound

- Example:

We don't explore every branch.

Dr. JEAN-ALEXIS DELAMER - StfX UNiVERSIty

Branch and Bound

- Theorem (Optimality Depth-First Branch-and-Bound):
- Algorithm depth-first branch-and-bound is optimal for admissible weight functions
- Proof:
- If there is no pruning, every path will be explored, thus the optimal solution will be found.
- Condition $L\left(v_{j}\right)<U$ confirms that the node's lower bound is smaller than the upper bound.
- Otherwise, the branch is pruned, since admissible weight functions exploring the subtree cannot lead to better solutions.

Depth-First Iterative-Deepening

- The first solution of Depth-First Branch and Bound is not always optimal.
- If the heuristic bounds are weak it can lead to a complete search of the tree (DFS).
- To control these two points, we can use Depth-First Iterative-Deepening.
- It combines BFS with a series of DFS
- Optimality of BFS and the space complexity of DFS.

Depth-First Iterative-Deepening

```
Function \(\operatorname{DFID}(u, g, U)\) :
    if (Goal(u)) //Goal found
    \(\operatorname{Succ}(u) \leftarrow \operatorname{Expand}(u)\)
    call=\{ \(\}\)
    foreach \(v\) in \(\operatorname{Succ}(u)\)
        if \((g+w(u, v) \leq U)\)
                        call \(\leftarrow(v, g+w(u, v))\)
                                \(g+w(u, v)<U^{\prime}\)
    foreach \((v, g)\) in call
                        \(\operatorname{DFID}(v, g, U)\)
End Function
\(U^{\prime} \leftarrow 0\)
bestPath \(\leftarrow \varnothing\);
While (bestPath \(=\varnothing\) and \(U^{\prime} \neq \infty\) )
    \(U \leftarrow U^{\prime}\)
    \(U^{\prime} \leftarrow \infty\)
    bestPath \(\leftarrow \operatorname{DFID}(s, 0, U)\)
return bestPath;
```


Depth-First Iterative-Deepening

- Example:

